US 2017/0103108 Al

exemplary embodiments, a compute node 110 can include a
data storage repository (not shown) for storing data includ-
ing, but not limited to, EntityIDs, EventIDs, MinibatchIDs,
PartitionIDs, sets of EventIDs, a Counters Table, a Streams
Table, an Events Table, store minibatches and partitions.
Data storage repository can be any programmable electronic
device or computing system capable of receiving, storing,
and sending files and data, and performing computer read-
able program instructions capable of communicating with
driver 104, one or more clients 108, and stream computing
program 102, via network 106. In an exemplary embodi-
ment, a compute node 110 can be a commodity server
capable of failing at any time.

[0024] In some exemplary embodiments, driver 104 gen-
erates a distributed key value store and distributes a copy of
the distributed key value store to the one or more compute
nodes 110. In some exemplary embodiments, each compute
node 110 in the cluster retains a cached copy of the distrib-
uted key value store. In other exemplary embodiments,
driver 104 distributes the distributed key value store to one
or more compute nodes 110.

[0025] FIG. 2 is an example illustrating stream processing
in a distributed computing environment 100, according to an
exemplary embodiment. FIG. 2 illustrates a distributed
stream computing system that utilizes a distributed input
data stream source, such as a receiver (not shown), one or
more compute nodes 110, and a distributed file system
directory 206 to achieve exactly-once processing semantics.
[0026] In an exemplary embodiment, a distributed input
data stream source generates data from a distributed mes-
saging system (not shown) and provides the generated data
as input for the system. The input data, such as a resilient
distributed dataset (RDD), may be a series of minibatches,
such as minibatch 201. Each minibatch may be composed of
one or more partitions, such as P1 202, P2 203, and PN 204.
A partition may be a subset of records in a batch that a
compute node 110 may receive and process. A record may
be a collection of fields that a compute node 110 may
process (e.g. first name, last name, address, department,
etc.). In an exemplary embodiment, a distributed input data
stream source provides reliable input data, which is not
corrupted in the event of a fault (e.g. a power failure) during
computation at one or more compute nodes 110.

[0027] In some exemplary embodiments, the distributed
stream computing system routes the one or more partitions
through one or more compute nodes 110 running a pure
function. In an exemplary embodiment, the distributed
stream computing system can route a partition to any one of
the one or more compute nodes 110. For example, the
system may route P2 203 to Compute Node 2. In another
exemplary embodiment, the system can route two or more
partitions to a compute node. For example, the system may
route P1 202 and P2 203 to Compute Node 1.

[0028] In some exemplary embodiments, a compute node
110, running a pure function, processes one or more parti-
tions. The distributed stream computing system stores the
computed output of each partition in a Distributed File
System file (i.e. a part file), such as DFS Part File 208, in
Distributed File System Directory 206. The distributed
stream computing system outputs the collection of all the
part files.

[0029] When a compute nodes 110 faults (e.g. sustaining
a power failure) during the processing period, the distributed
stream computing system only partially processed the logi-

Apr. 13,2017

cal partition of input data for the faulted compute node 110.
The system achieves exactly-once processing semantics by
re-processing the computation on that partition either on the
same compute node or another compute node, resulting in
over-writing of the part file containing the partially pro-
cessed partition.

[0030] FIG. 3 is a functional block diagram depicting a
storage database 300 of stream computing program 102 for
distributed stream processing with non-idempotent output
operations, according to an exemplary embodiment. In some
exemplary embodiments, storage database 300 can be
located locally on stream computing program 102. In other
exemplary embodiments, storage database 300 can be
located remotely from driver 104 on one or more compute
nodes 110. In yet other exemplary embodiments, storage
database 300 may be located on a secondary distributed
stream processing system.

[0031] In an exemplary embodiment, stream computing
program 102 receives input messages from one or more
clients 108, via network 106. In other exemplary embodi-
ments, stream computing program 102 receives input mes-
sages from a stream computing ingress system. Stream
computing system 102 dispatches output messages as a
response to the request from an environment. In another
exemplary embodiment, stream computing program 102
may transport messages via a web-based protocol, such as
REST, into a messaging bus. Messages may refer to various
activities such as the amount of time a user spends on a
website or the amount of money spent by a consumer on a
retailer’s website. Messages, entering or exiting a distributed
computing system, are called events.

[0032] In some exemplary embodiments, each event con-
tains two identifiers such as “EntityID” and “EventID.”
EntityID uniquely identifies the associated entity or user
(e.g. customer, prospect, etc.) that relates to the event. In an
exemplary embodiment, stream computing program 102
assigns an EntityID to the entity or user. In another exem-
plary embodiment, an external system can assign the Enti-
tyID. EventID is an event value assigned to the event. This
event value is unique, across the one or more compute nodes
110, to a given EntityID. In an exemplary embodiment, the
event value can monotonically increase. In some exemplary
embodiments, stream computing program 102 can assign the
identifiers to the event at the ingress point. In an exemplary
embodiment, the event include separate mini-batches, such
as mini-batch 201. In an exemplary embodiment, stream
computing program 102 can logically model the mini-
batches as a fault tolerant immutable, partitioned collection
of'elements. Mini-batch 201 includes one or more partitions,
such as P1 202 and P2 203. A partition, such as P1, includes
multiple records. In an exemplary embodiment, stream
computing program 102, utilizing an ingress system, such as
driver 104, can dispatch each partition to a specific compute
node 110, such as compute node 1, via network 106. In some
exemplary embodiments, stream computing program 102
can push the partitions to one or more compute nodes 110
using the logic of the partitioning scheme such as a key-
range, hash function based partition, directory, or using the
underlying distributed system.

[0033] Insome exemplary embodiments, storage database
300 can be a key value store. The key value store can include
three columns, table 302, key 304, and payload 306. Table
302 includes three tables, counters table 308, streams table
309, and events table 310. Counters table 308 includes



